Medial parietal cortex encodes perceived heading direction in humans.
نویسندگان
چکیده
The ability to encode and update representations of heading direction is crucial for successful navigation. In rats, head-direction cells located within the limbic system alter their firing rate in accordance with the animal's current heading. To date, however, the neural structures that underlie an allocentric or viewpoint-independent sense of direction in humans remain unknown. Here we used functional magnetic resonance imaging (fMRI) to measure neural adaptation to distinctive landmarks associated with one of four heading directions in a virtual environment. Our experiment consisted of two phases: a "learning phase," in which participants actively navigated the virtual maze; and a "test phase," in which participants viewed pairs of images from the maze while undergoing fMRI. We found that activity within the medial parietal cortex--specifically, Brodmann area 31--was modulated by learned heading, suggesting that this region contains neural populations involved in the encoding and retrieval of allocentric heading information in humans. These results are consistent with clinical case reports of patients with acquired lesions of medial posterior brain regions, who exhibit deficits in forming and recalling links between landmarks and directional information. Our findings also help to explain why navigation disturbances are commonly observed in patients with Alzheimer's disease, whose pathology typically includes the cortical region we have identified as being crucial for maintaining representations of heading direction.
منابع مشابه
A neural model of visually guided steering, obstacle avoidance, and route selection.
A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3-dimensional virtual reality environment to determine the position of objects on the basis of motion discontinuities and computes heading direction, or the direction of self-motion, from global opti...
متن کاملAn fMRI study of parietal cortex involvement in the visual guidance of locomotion.
Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the "far road" and "near road" mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction ...
متن کاملCortical neurons encoding path and place: where you go is where you are.
We recorded neuronal activity in monkey medial superior temporal (MST) cortex during movement on a motorized sled. Most neurons showed a preferred heading direction, but some responded only when that heading was part of a particular path. Others responded only when the animal was at a certain place in the room, regardless of its path to that place. Video simulations of the self-movement scene e...
متن کاملCommon Neural Representations for Visually Guided Reorientation and Spatial Imagery.
Spatial knowledge about an environment can be cued from memory by perception of a visual scene during active navigation or by imagination of the relationships between nonvisible landmarks, such as when providing directions. It is not known whether these different ways of accessing spatial knowledge elicit the same representations in the brain. To address this issue, we scanned participants with...
متن کاملBinocular disparity tuning and visual-vestibular congruency of multisensory neurons in macaque parietal cortex.
Many neurons in the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas of the macaque brain are multisensory, responding to both optic flow and vestibular cues to self-motion. The heading tuning of visual and vestibular responses can be either congruent or opposite, but only congruent cells have been implicated in cue integration for heading perception. Because of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 39 شماره
صفحات -
تاریخ انتشار 2010